1、高頻信號布線時要注意哪些問題?
答:信號線的阻抗匹配;與其他信號線的空間隔離;對于數(shù)字高頻信號,差分線效果會更好;
2、在布板時,如果線密,過孔就可能要多,當然就會影響板子的電氣性能,請問怎樣提高板子的電氣性能?
答:對于低頻信號,過孔不要緊,高頻信號盡量減少過孔。如果線多可以考慮多層板;
3、是不是板子上加的去耦電容越多越好?
答:去耦電容需要在合適的位置加合適的值。例如,在你的模擬器件的供電端口就進加,并且需要用不同的電容值去濾除不同頻率的雜散信號;
4、一個好的板子它的標準是什么?
答:布局合理、功率線功率冗余度足夠、高頻阻抗阻抗、低頻走線簡潔.
5、通孔和盲孔對信號的差異影響有多大?應(yīng)用的原則是什么?
答:采用盲孔或埋孔是提高多層板密度、減少層數(shù)和板面尺寸的有效方法,并大大減少了鍍覆通孔的數(shù)量。但相比較而言,通孔在工藝上好實現(xiàn),成本較低,所以一般設(shè)計中都使用通孔。
6、在涉及模擬數(shù)字混合系統(tǒng)的時候,有人建議電層分割,地平面采取整片敷銅,也有人建議電地層都分割,不同的地在電源源端點接,但是這樣對信號的回流路徑就遠了,具體應(yīng)用時應(yīng)如何選擇合適的方法?
答:如果你有高頻>20MHz信號線,并且長度和數(shù)量都比較多,那么需要至少兩層給這個模擬高頻信號。一層信號線、一層大面積地,并且信號線層需要打足夠的過孔到地。這樣的目的是:1)對于模擬信號,這提供了一個完整的傳輸介質(zhì)和阻抗匹配;2)地平面把模擬信號和其他數(shù)字信號進行隔離;3)地回路足夠小,因為你打了很多過孔,地有是一個大平面。
7、在電路板中,信號輸入插件在PCB最左邊沿,MCU在靠右邊,那么在布局時是把穩(wěn)壓電源芯片放置在靠近接插件(電源IC輸出5V經(jīng)過一段比較長的路徑才到達MCU),還是把電源IC放置到中間偏右(電源IC的輸出5V的線到達MCU就比較短,但輸入電源線就經(jīng)過比較長一段PCB板)?或是有更好的布局?
答:首先你的所謂信號輸入插件是否是模擬器件?如果是是模擬器件,建議你的電源布局應(yīng)盡量不影響到模擬部分的信號完整性.因此有幾點需要考慮:1)首先你的穩(wěn)壓電源芯片是否是比較干凈,紋波小的電源.對模擬部分的供電,對電源的要求比較高;2)模擬部分和你的MCU是否是一個電源,在高精度電路的設(shè)計中,建議把模擬部分和數(shù)字部分的電源分開;3)對數(shù)字部分的供電需要考慮到盡量減小對模擬電路部分的影響.
8、在高速信號鏈的應(yīng)用中,對于多ASIC都存在模擬地和數(shù)字地,究竟是采用地分割,還是不分割地?既有準則是什么?哪種效果更好?
答:迄今為止,沒有定論。一般情況下你可以查閱芯片的手冊。ADI所有混合芯片的手冊中都是推薦你一種接地的方案,有些是推薦公地、有些是建議隔離地。這取決于芯片設(shè)計。
9、何時要考慮線的等長?如果要考慮使用等長線的話,兩根信號線之間的長度之差最大不能超過多少?如何計算?
答:差分線計算思路:如果你傳一個正弦信號,你的長度差等于它傳輸波長的一半是,相位差就是180度,這時兩個信號就完全抵消了。所以這時的長度差是最大值。以此類推,信號線差值一定要小于這個值。
10、高速中的蛇形走線,適合在那種情況?有什么缺點沒,比如對于差分走線,又要求兩組信號是正交的。
答蛇形走線,因為應(yīng)用場合不同而具不同的作用:
1)如果蛇形走線在計算機板中出現(xiàn),其主要起到一個濾波電感和阻抗匹配的作用,提高電路的抗干擾能力。計算機主機板中的蛇形走線,主要用在一些時鐘信號中,如PCI-Clk,AGP
一、直角走線(三個方面)
直角走線的對信號的影響就是主要體現(xiàn)在三個方面:一是拐角可以等效為傳輸線上的容性負載,減緩上升時間;二是阻抗不連續(xù)會造成信號的反射;三是直角尖端產(chǎn)生的EMI,到10GHz以上的RF設(shè)計領(lǐng)域,這些小小的直角都可能成為高速問題的重點對象。
二、差分走線(“等長、等距、參考平面”)
何為差分信號(DifferentialSignal)?通俗地說就是驅(qū)動端發(fā)送兩個等值、反相的信號,接收端通過比較這兩個電壓的差值來判斷邏輯狀態(tài)“0”還是“1”。而承載差分信號的那一對走線就稱為差分走線。差分信號和普通的單端信號走線相比,最明顯的優(yōu)勢體現(xiàn)在以下三方面:
1、抗干擾能力強,因為兩根差分走線之間的耦合很好,當外界存在噪聲干擾時,幾乎是同時被耦合到兩條線上,而接收端關(guān)心的只是兩信號的差值,所以外界的共模噪聲可被完全抵消。
2、能有效抑制EMI,同樣的道理,由于兩根信號的極性相反,他們對外輻射的電磁場可以相互抵消,耦合的越緊密,泄放到外界的電磁能量越少。
3、時序定位精確,由于差分信號的開關(guān)變化是位于兩個信號的交點,而不像普通單端信號依靠高低兩個閾值電壓判斷,因而受工藝,溫度的影響小,能降低時序上的誤差,同時也更適合于低幅度信號的電路。目前流行的LVDS(lowvoltagedifferentialsignaling)就是指這種小振幅差分信號技術(shù)。
三、蛇形線(調(diào)節(jié)延時)
蛇形線是Layout中經(jīng)常使用的一類走線方式。其主要目的就是為了調(diào)節(jié)延時,滿足系統(tǒng)時序設(shè)計要求。其中最關(guān)鍵的兩個參數(shù)就是平行耦合長度(Lp)和耦合距離(S),很明顯,信號在蛇形走線上傳輸時,相互平行的線段之間會發(fā)生耦合,呈差模形式,S越小,Lp越大,則耦合程度也越大??赡軙е聜鬏斞訒r減小,以及由于串擾而大大降低信號的質(zhì)量,其機理可以參考對共模和差模串擾的分析。下面是給Layout工程師處理蛇形線時的幾點建議:
1、盡量增加平行線段的距離(S),至少大于3H,H指信號走線到參考平面的距離。通俗的說就是繞大彎走線,只要S足夠大,就幾乎能完全避免相互的耦合效應(yīng)。
2、減小耦合長度Lp,當兩倍的Lp延時接近或超過信號上升時間時,產(chǎn)生的串擾將達到飽和。
3、帶狀線(Strip-Line)或者埋式微帶線(EmbeddedMicro-strip)的蛇形線引起的信號傳輸延時小于微帶走線(Micro-strip)。理論上,帶狀線不會因為差模串擾影響傳輸速率。
4、高速以及對時序要求較為嚴格的信號線,盡量不要走蛇形線,尤其不能在小范圍內(nèi)蜿蜒走線。
5、可以經(jīng)常采用任意角度的蛇形走線,能有效的減少相互間的耦合。
6、高速PCB設(shè)計中,蛇形線沒有所謂濾波或抗干擾的能力,只可能降低信號質(zhì)量,所以只作時序匹配之用而無其它目的。
7、有時可以考慮螺旋走線的方式進行繞線,仿真表明,其效果要優(yōu)于正常的蛇形走線。